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NOTE

Homogeneity of Titania-Silica Mixed Oxides: On UV-DRS Studies
as a Function of Titania Content

The extraordinary catalytic activity and selectivity of Ti-
containing crystalline and amorphoussilicates for oxidation
reactions with peroxides is attributed to isolated tetrahedral
Ti sites in the silica framework (1). Diffuse reflectance
UV-VIS spectroscopy (DRS) is commonly used to establish
the presence of isolated Ti-sites. The charge transfer (CT)
transitions between the oxide ions and the empty d-orbital
of Ti** are strongly shifted from 26,000 cm~! in anatase
towards higher wavenumbers with decreasing Ti-content
(2). In two recent publications (3, 4) a new class of meso-
poroussilica-titania aerogels has been described, where the
presence of highly dispersed titania in silica matrixes is em-
phasized. The authors attempted to balance the hydrolysis
and condensation tendencies of the precursors and favour
the use of the highly reactive tetramethoxysilane, together
with acetylacetonate modified, chelated titanium tetraiso-
propoxide, in order to optimize the molecular mixing of the
constituents. The materials were prepared from alkoxides
by a sol-gel procedure. A rather monomodal mesoporosity
is obtained by semicontinuous extraction with supercritical
CO;. The catalytic potential of these materials in the alkyl-
hydroperoxide mediated epoxidation of olefinsis attributed
to the high titania dispersion in the silica matrix. These
materials are not only important extensions of the avail-
able selective oxidation catalysts, but their spectroscopic
behaviour is an important contribution to our fundamental
understanding of site-isolated Ti-silicates.

DRS UV-VIS spectroscopy has been applied to verify the
high chemical homogeneity of the aerogels (3, 4). Materials
containing 3.8, 7.7, and 15.8 wt% titania, respectively, show
absorption edges between those of anatase (28,000 cm™1)
and TS-1 (titanosilicalite with MFI-structure, 34,000 cm™)
(5). This fact is interpreted as the indication for an almost
complete titania dispersion with only small concentrations
of titania nanodomains in the materials, a confirmation of
the other spectroscopic conclusions, and catalytic experi-
ments mentioned (3, 4). A shift of the absorption maximum
towards higher wavenumbers on in situ drying of the sam-
ples is reported but not shown. The authors conclude that
an almost perfect elemental homogeneity was achieved in
their materials due to the applied preparation.

UV-VIS spectroscopy, a powerful method for the charac-
terization of titania-containing mixed oxides such as titania-

silica gels (6) or titanium silicalites (7) is one of the well-
accepted means to confirm the homogeneous, isomorphous
lattice incorporation of tetrahedral Ti-ions in zeolites and
related materials (8, 9). Small amounts of Ti** in a silicalite
network result in UV-absorption maxima in the region of
45,000 to 48,000 cm~?, which had been attributed to the CT-
bands of tetrahedral Ti(IV) (8, 10). Following the literature
(8, 11), the position of the band can be estimated as

v (cm™) = 30,000 [Xopt(X) — xopt(TD],

where xopt(X) is the optical density of a group X (OH~
or O?7) in the coordination sphere of Ti(1V)=23.45 and
xopt(Ti) is the optical density of tetrahedrally coordinated
Ti(1V) (1.85). Therefore, the band maximum of the tetra-
hedral Ti(IV) species is estimated to appear at 48,000 cm™,
In the presence of water, the tetrahedral coordination can
be transferred into the octahedral one by the insertion
of two additional water ligands, resulting in a shift of
xopt(Ti) to a value of 2.05, which alters the position of
the corresponding CT-band to 42,000 cm~* (8). This has
also been documented Liu and Davis, who recognized a
significant shift to higher wavenumbers upon dehydration
of aTi/Si1l:8sample (6). A broad band between 28,000 and
33,000 cm~! has been assigned to extra framework titania
(anatase) (12) with a lower detection level of 0.03 wt%
including nanoparticles (13).

In our studies of amorphous microporous mixed oxides
(14) we have obtained access to amorphous titania-silica
mixed oxides (denoted as AMM-Ti,Si, x=mol% of ti-
tania in the mixture), which cover for the first time the
UV-VIS DRS to 50,000 cm~* for the full range of com-
position (0 < x < 100) after two different pretreatment pro-
cedures. All materials are X-ray amorphous and show a
maximum in the pore size distribution at about 0.8 nmand a
total surface area of 200-300 m?/g. No indication of anatase
formation is obtained by XRD, HRTEM, and selected area
EDX (15), or UV. The results of our UV-VIS-DRS stud-
ies indicate various shortcomings in the spectral range used
and in the interpretation of the related studies in the past.

UV-VIS-DRS spectroscopy was carried out on a Varian
Cary 05 UV-VIS-NIR-spectrometer in diffuse reflectance
(DR) technique in the range of 12,500 to 50,000 cm™! (scan
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FIG.1. UV-DRS spectra of amorphous microporous mixed Ti-Si

oxides AMM-Ti,Si under (a) ambient and (b) dry conditions: AMM-Si
(A), AMM-Ti;Si (B), AMM-TiggSi (C), AMM-TigSi (D), AMM-TisSi
(E), and AMM-Ti (F).

rate 25,000 cm~Y/min) on particles <100 um. The DR-
spectra were recorded using a “Halon”-type white sphere
reference standard, which is superior to barium sulfate or
magnesium oxide coated spheres and allows measurements
at wavelengths down to 210 mm (47,600 cm™1). Previous
work by others have used less appropriate cavities and the
spectra in the 40,000-50,000 cm™~? region are very noisy (7).
Our resulting spectra were recorded under ambient as well
asunder dry conditions using a quartz cell which allows heat
treatment (12-15 h at 573 K in a flow of N) and measure-
ments in a moisture-free atmosphere. The Kubelka—Munk
function was used to display the data. The spectra of the
AMM-Ti,Si samples (calcined at 523 K subsequent to gela-
tion) under ambient conditions are displayed in Fig. 1a,
while Fig. 1b gives the corresponding spectra for the same
samples measured in situ under moisture-free conditions
after removal of water.

The samples measured in the absence of moisture after
removal of water show a monomodal DR-spectrum (Fig. 1b,
B-D). These samples exhibit mainly the absorption char-
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acteristics of isolated, tetrahedral Ti(IV) species in a silica
matrix (absorption at 45,000 cm~1). Apparently in the ma-
terials with the Ti-contents from 0 to 9 mol%, isolated tita-
nia tetrahedra dominate the Ti distribution. In the AMM-
Tisp Si and AMM-Ti samples (Fig. 1b, E and F), the main
absorption is shifted significantly to lower wavenumbers,
consistent with the so-called quantum size effect due to the
increasing contributions of Ti-O-Ti bonding (15).

In their as-synthesized, partly hydrated state, all AMM-
TiSi samples exhibit a bimodal DRS-signal (Fig. 1a, B-E).
Due to the coordination of water (or alcohol/residual
alkoxide), part of the Ti(lIV) is transferred into a coor-
dination higher than tetrahedral (absorption at 35,000 to
40,000 cm™1), while the rest of the Ti(IV) centers are still
in tetrahedral coordination (approx. 45,000 cm~1), con-
sistent with the results reported for titanium silicalites.
The lower the titania content, the lower the intensity of
the low wavenumber component of the spectrum. The as-
synthesized hydrated microporous amorphous pure titania
(AMM-Ti) reveals an absorption edge around 28,000 cm*
(Fig. 1a, F), similar to anatase (4). The additional band at
23,000 cm~! of the AMM-Ti in Fig. 1a, F, disappears in the
waterfree sample (Fig. 1b, F) and is therefore irrelevant for
this study. Pure silica prepared and tested under compara-
ble conditions does not show any absorption at all (Figs. 1a
and 1b, A).

According to these DRS-results, isolated Ti(IV) sites in
the silica matrix are dominant in the overall Ti-population
up to ca 9 mol% of Ti. The tendency for the formation of
octahedral sites through hydration seems to correlate with
Ti-content of the materials, i.e., the increasing presence of
Ti—O-Ti bonds. It may be significant that a large portion of
the tetrahedral sites associated with the band at 45,000 cm~?
does not appear to interact with the moisture. However, no
attempt was made to saturate all sites with water; the spec-
tra show the UV-absorption at ambient conditions. Based
on the above spectral data, the spectral region from 40,000—
50,000 cm~? in UV-VIS-studies of Ti-silicates or silicalites
is as important or may be more important than the com-
monly presented region from 15,000 to 40,000 cm~. The
dependence of the position of the CT-band between 30,000
and 40,000 cm~! on the moisture content of the sample
documented in Fig. 1 suggests that assignments about the
nature of the Ti-incorporation on this basis alone are not
reliable. We propose that characterization of such materials
should be based on DR-spectra of moisture-containing and
moisture-free samples. Essential is the investigation of the
maximum at 45,000 cm~! which, due to the nature of the
detector, may not be accessible by most UV-spectrometers.

The high homogeneity of the AMM glasses is consis-
tent with microstructural DRIFT-examinations and high
resolution transmisson electron microscopy combined with
X-ray microanalysis (HRTEM/EDX). Further results on
the material characterization and catalytic performance of
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AMM-Ti,Si catalysts are presented along with detailed
preparation conditions (16). Our results also show that high
homogeneity of titania dispersion can be obtained at highly
acidic sol-gel conditions with unmodified tetraethoxysilane
and titanium-tetraisopropoxide without the involvement of
more complicated sol-gel techniques like chelation, prehy-
drolysis, or balance of hydrolysis tendency.
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